首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   11篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   14篇
  2010年   20篇
  2009年   20篇
  2008年   14篇
  2007年   16篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1959年   1篇
  1954年   1篇
  1941年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
21.
Many bird species start laying their eggs earlier in response to increasing spring temperatures, but the causes of variation between and within species have not been fully explained. Moreover, synchronization of the nestling period with the food supply not only depends on first‐egg dates but also on additional reproductive parameters including laying interruptions, incubation time and nestling growth rate. We studied the breeding cycle of two sympatric and closely related species, the blue tit Cyanistes caeruleus and the great tit Parus major in a rich oak‐beech forest, and found that both advanced their mean first‐egg dates by 11–12 days over the last three decades. In addition, the time from first egg to fledging has shortened by 2–3 days, through a decrease in laying interruptions, incubation time (not statistically significant) and nestling development time. This decrease is correlated with a gradual increase of temperatures during laying, suggesting a major effect of the reduction in laying interruptions. In both species, the occurrence of second clutches has strongly decreased over time. As a consequence, the average time of fledging (all broods combined) has advanced by 15.4 and 18.6 days for blue and great tits, respectively, and variance in fledging dates has decreased by 70–75%. Indirect estimates of the food peak suggest that both species have maintained synchronization with the food supply. We found consistent selection for large clutch size, early laying and short nest time (laying to fledging), but no consistent changes in selection over time. Analyses of within‐individual variation show that most of the change can be explained by individual plasticity in laying date, fledging date and nest time. This study highlights the importance of studying all components of the reproductive cycle, including second clutches, in order to assess how natural populations respond to climate change.  相似文献   
22.
23.
1. In nature, several parasitoid species often exploit the same stages of a common herbivore host species and are able to coexist despite competitive interactions amongst them. Less is known about the direct effects of resource quality on intrinsic interactions between immature parasitoid stages. The present study is based on the hypothesis that variation in the quality or type of plant resources on which the parasitoids indirectly develop may be complementary and thus facilitate niche segregation favouring different parasitoids in intrinsic competition under different dietary regimes. 2. The present study investigated whether two herbivore species, the cabbage butterflies Pieris brassicae and Pieris rapae (Pieridae), and the quality of two important food plants, Brassica oleracea and Brassica nigra (Brassicaceae), affect the outcome of intrinsic competition between their primary larval endoparasitoids, the gregarious Cotesia glomerata (Braconidae) and the solitary Hyposoter ebeninus (Ichneumonidae). 3. Hyposoter ebeninus is generally an intrinsically superior competitor over C. glomerata. However, C. glomerata survived more antagonistic encounters with H. ebeninus when both developed in P. brassicae rather than in P. rapae caterpillars, and while its host was feeding on B. nigra rather than B. oleracea. Moreover, H. ebeninus benefitted from competition by its higher survival in multiparasitised hosts. 4. These results show that both plant and herbivore species mediate the battleground on which competitive interactions between parasitoids are played out and may affect the outcomes of these interactions in ways that enable parasitoids to segregate their niches. This in turn may promote coexistence among parasitoid species that are associated with the same herbivore host.  相似文献   
24.
Thermonastic leaf movements: a synthesis of research with Rhododendron   总被引:1,自引:0,他引:1  
Thermonastic leaf movements in Rhododendron L. occur in response to freezing temperatures. These movements are composed of leaf curling and leaf angle changes that are distinct leaf movements with different responses to climatic factors. Leaf angle is controlled by the hydration of the petiole, as affected by soil water content, atmospheric vapour pressure, and air temperature. In contrast, leaf curling is a specific response to leaf temperature, and bulk leaf hydration has little effect. The physiological cause of leaf curling is not well understood, but the mechanism must lie in the physiology of the cell wall and/or regional changes in tissue hydration. Available evidence suggests that intercellular freezing is not a cause of leaf curling.
Manipulation experiments demonstrate that changes in leaf orientation in Rhododendron most likely serve to protect the leaves from membrane damage due to high irradiance and cold temperatures. In particular, the pendent leaves protect the chloroplast from photoinhibition. Leaf curling may serve to slow the rate of thaw following freezing, a common phenomenon in the Appalachian mountains of the U.S. The thermonastic leaf movements have a greater importance to plants in a dim environment because the potential impact to canopy carbon gain is greater than in high light environments.
These leaf movements have several implications for horticultural management. There seems to be a trade-off between water stress tolerance and freezing stress tolerance by leaf movements. Thermonastic leaf movements may be a major mechanism of cold stress tolerance in Rhododendron species. The actual physiological cause of leaf movement has not been elucidated and many more species need to be evaluated to verify the general importance of leaf movements to Rhododendron ecology and evolution.  相似文献   
25.
26.
The lower jaw in Melanognathus gen. nov. and several other Devonian dipnoans is described and compared with that in Neoceratodus. It is a most conservative structure, which apart from the effect of the retrogressive development of the skeleton has hardly changed since Devonian times. A new interpretation of the sensory canal bones is given. With respect to these elements and the structure of the lower jaw as a whole, the dipnoans differ fundamentally from the rhipidistid crossopterygians, tetrapods and aetinopterygians. Several resemblances to the lower jaw in holocephalians are demonstrated. The results confirm the view that the Dipnoi comprise an early specialized and isolated group, perhaps more closely related to the elasmo-branchiomorphs than to the teleostomes and tetrapods.  相似文献   
27.
1. Winter temperatures differ markedly on the Canadian prairies compared with Denmark. Between 1 January 1998 and 31 December 2002, average weekly and monthly temperatures did not drop below 0 °C in the vicinity of Silkeborg, Denmark. Over this same time, weekly average temperatures near Calgary, Alberta, Canada, often dropped below −10 °C for 3–5 weeks and the average monthly temperature was below 0 °C for 2–4 months. Accordingly, winter ice conditions in shallow lakes in Canada and Denmark differed considerably. 2. To assess the implications of winter climate for lake biotic structure and function we compared a number of variables that describe the chemistry and biology of shallow Canadian and Danish lakes that had been chosen to have similar morphometries. 3. The Danish lakes had a fourfold higher ratio of chlorophyll‐a: total phosphorus (TP). Zooplankton : phytoplankton carbon was related to TP and fish abundance in Danish lakes but not in Canadian lakes. There was no significant difference in the ratio log total zooplankton biomass : log TP and the Canadian lakes had a significantly higher proportion of cladocerans that were Daphnia. These differences correspond well with the fact that the Danish lakes have more abundant and diverse fish communities than the Canadian lakes. 4. Our results suggest that severe Canadian winters lead to anoxia under ice and more depauperate fish communities, and stronger zooplankton control on phytoplankton in shallow prairie lakes compared with shallow Danish lakes. If climate change leads to warmer winters and a shorter duration of ice cover, we predict that shallow Canadian prairie lakes will experience increased survivorship of planktivores and stronger control of zooplankton. This, in turn, might decrease zooplankton control on phytoplankton, leading to ‘greener’ lakes on the Canadian prairies.  相似文献   
28.
1. Parasitoids are known to utilise learning of herbivore‐induced plant volatiles (HIPVs) when foraging for their herbivorous host. In natural situations these hosts share food plants with other, non‐suitable herbivores (non‐hosts). Simultaneous infestation of plants by hosts and non‐hosts has been found to result in induction of HIPVs that differ from host‐infested plants. Each non‐host herbivore may have different effects on HIPVs when sharing the food plant with hosts, and thus parasitoids may learn that plants with a specific non‐host herbivore also contain the host. 2. This study investigated the adaptive nature of learning by a foraging parasitoid that had acquired oviposition experience on a plant infested with both hosts and different non‐hosts in the laboratory and in semi‐field experiments. 3. In two‐choice preference tests, the parasitoid Cotesia glomerata shifted its preference towards HIPVs of a plant–host–non‐host complex previously associated with an oviposition experience. It could, indeed, learn that the presence of its host is associated with HIPVs induced by simultaneous feeding of its host Pieris brassicae and either the non‐host caterpillar Mamestra brassicae or the non‐host aphid Myzus persicae. However, the learned preference found in the laboratory did not translate into parasitisation preferences for hosts accompanying non‐host caterpillars or aphids in a semi‐field situation. 4. This paper discusses the importance of learning in parasitoid foraging, and debates why observed learned preferences for HIPVs in the laboratory may cancel out under some field experimental conditions.  相似文献   
29.
A large variety of cation transport systems are involved in the regulation of calcium homeostasis in endothelial cells. The focus of the present study is to determine the contribution of nonselective cation channels from the TRP (transient receptor potential) family to cellular calcium homeostasis of porcine aortic endothelial cells (PAEC). One member of the TRPV (vanniloid) subfamily, TRPV4, has previously been shown to be involved in cation transport induced by a large variety of stimulations including osmolarity, temperature, mechanical stress, and phosphorylation. Here, we demonstrate the existence of several TRP proteins, including TRPV4, in PAEC using RT-PCR. To test whether this channel is functional, we performed FURA-2 calcium measurements and whole-cell patch-clamp experiments. We observed the induction of large calcium signals following mechanical stress, altered extracellular temperature, and the selective TRPV4 activator 4-α -PDD. These effects were diminished in the presence of the TRPV4 inhibitor miconazole, suggesting the involvement of this channel in mediating endothelial calcium signals. The large amounts of transported calcium and the short signaling ways suggest a potentially important role of this channel in many physiological processes.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号